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The parametric instability of a plane internal gravity wave is considered. When 
the two-dimensional equations of vorticity and mass conservation are linearized 
in the disturbance quantities, partial differential equations with periodic coeffi- 
cients result. Substitution of a perturbation of the form dictated by Floquet 
theory into these equations yields compatibility conditions which, when evalu- 
ated numerically, give the curves of neutral stability and constant disturbance 
growth rate. These results reveal that, for an internal wave of even infinitesimal 
amplitude, disturbance waves can begin to grow in amplitude. Moreover, these 
parametric instabilities are shown to reduce to the classical case of the non- 
linear resonant interaction in the limit of vanishingly small basic-state amplitude. 
The fact that these unstable disturbances can exist for an internal wave of any 
amplitude suggests that this phenomenon may be an important mechanism for 
extracting energy from an internal gravity wave. 

1. Introduction 
In  the deep ocean, internal gravity waves provide a mechanism which is 

responsible for the transport of momentum and energy over appreciable dis- 
tances without any significant net movement of mass. As the ubiquity of these 
waves is a matter of record (Garrett & Munk 1972), one is inclined to investigate 
the nature of any phenomena that would impair, or at least impede, their ability 
to propagate. In  the case of waves with a group velocity directed upwards, for 
example, Booker & Bretherton (1967) have shown that above the height at 
which the mean horizontal velocity equals the horizontal phase speed of the 
wave, the so-called critical level, very little energy is transmitted. This critical 
layer is regarded as a sink of wave energy, although Thorpe (1976) mentions 
that no experimental evidence exists to show that the deficit in wave momentum 
will appear in the basic flow. In  a somewhat different vein, Breeding (1971) has 
shown that a significant amount of the wave energy impinging on the critical 
layer can be reflected there, although several other naturally occurring phenomena 
can produce a similar effect. For example, even under propagation conditions 
which preclude the existence of a critical layer, horizontal shears and the thermo- 
cline itself can reflect significant &actions of the internal-wave energy incident 
upon them from above or below (Xed & Dugan 1974, 1976). 

In  addition to the reflexion of energy, various instabilities arising from the 
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wave motion itself can interfere with the wave propagation. The debate over 
which of the several types of instability are predominantly responsible for any 
disintegration of waves in the ocean is a lively one. The mechanism first proposed 
was that of the shear-flow instability. Assuming that the amplitude of each 
individual wave trapped on the thermocline is limited by the occurrence of a 
Kelvin-Helmholtz instability at  its crests and troughs, Phillips (1966a) has 
calculated a spectral shape which is in fair agreement with the results of Charnock 
(1965) for towed spectra. Orlanski & Bryan (1969) later pointed out that, if the 
wave-related horizontal speed of a fluid particle anywhere equals the horizontal 
propagation velocity, a local overturning of the density structure might occur. 
Applying this amplitude-limiting criterion to each Fourier component indivi- 
dually, Orlanski (1971) derived a spectrum which, like Phillips’s, is in fair 
agreement with Charnock’s towed wave spectra. On the other hand, McEwan t 
Robinson (1975) criticize Orlanski (1972) for having neglected fine-scale structure 
in his analytical model of overturning in standing internal waves. They point out 
in this regard that a common form of internal-wave instability is a rather delicate 
one which manifests itselfin those nonlinearities neglected by Orlanski. To focus 
upon this phenomenon better, McEwan & Robinson model the basic-state wave 
by a periodic rotation of the isopycnals and thus restrict their attention to 
potentially unstable disturbances having length scales much smaller than those 
of the basic wave motion whose stability they are investigating. By so doing 
they demonstrate that these small-scale wavelets are parametrically unstable 
to the local rocking motion of the isopycnals, which models the local effect of 
the large-scale wave. Viscosity is essential in determining disturbance growth 
rates in this calculation and so the instability is considered important in the 
formation of oceanic fine-structure having scales of the order of centimetres. 

In  the present paper, we investigate the stability of finite-amplitude plane 
monochromatic internal gravity waves and, further, the mechanism upon which 
we focus our attention is that of a parametric instability. Although the present 
analysis neglects nonlinear disturbance terms, we shall make no restrictions on 
the length scales of these unstable wavelets. Without these a p&ori disturbance 
length-scale arguments, the analytical solution of the problem is quite complex, 
as was noted by McEwan & Robinson. The approach we shall take, therefore, 
is a numerical one and this allows the examination of the stability of Gte- 
amplitude internal waves with any length scale and presumably allows us to 
obtain results to arbitrary accuracy. 

2. A simple example 
The coupled partial differential equations describing internal-wave instabilities 

are formidable, and the search for their modes of parametric inatability does not 
appear straightforward. A careful examination of the well-known Mathieu 
equation provides an excellent opportunity to observe the properties of these 
parametric instabilities in a simple one-dimensional equation; moreover, this 
simple case will suggest the appropriate methods to be employed in the internal- 
wave problem. 
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N = 3  N = 6  N = 7  
a = O(M)  a = - ~ P + O ( M ~ )  u = - ~ P + o ( M ~ )  
a = l+M+O(M*) a = l+M+O(MZ) a = l+M-*M*+O(MS) 
a = l - M + O ( M a )  a = l -N+o(~a)  u = i--M-+Ma+O(Ms) 

a = 4++Ma+O(M4) a = 4+?&?+0(w) 
u = 4+O(Ma) 
a = 9+&Ma+O(M:*) 
a = 9+*Ma+O(Mz) 

u = 4+O(Ma) 

TABLE 1. The neutral curves a = a(M)  of Mathieu's equation shown for varying determi- 
nant order N and Mathieu functions ce, and se, (notation of Abramowitz & S t e p  1965). 
The neutral curve for ce2 is still in error (for N = 7 )  by i+-Mz, the correct result being 
a = 4+s-Ma+0(M4). 

Mathieu's equation (Ince 1956) is written as 

@qq+(a-2Mcos2v)+ = 0. (1) 

If M = 0, (1) admits a solution of period n or 277 when a = n2, where n is any 
integer. All periodic solutions to (I) are not necessarily stable, however, and we 
anticipate this behaviour by assuming a solution of the form 

m 

n--ua 
+ = ~ x P C U ~ I )  X $neSnq- 

Substitution of this expression into (1) will yield a set of compatibility conditions 
a = a ( M ; p )  which indicate how the parameters of the assumed solution are 
related. These expressions a = a(M;p) represent curves of p = constant in the 
a,M plane (Abramowitz & Stegun 1965). In  particular, the curves on which 
p = 0 separate the regions of stable (purely imaginary p)  and unstable solutions 
(complex p)  to (1) in this a, M plane. We may calculate these neutral curves 
a = a(M) by setting p = 0 and writing 

Substituting (2) into (1) and re-indexing the sums, we obtain the recursion 
relation 

For each integer, we obtain an equation linking the three non-contiguous mode 
coefficients @n-2, @,, and +,,+,. These equations are homogeneous, however, 
and the necessary condition for a non-trivial solution to exist is that an infinite 
determinant A vanish (see appendix) : 

-M+n-2+(a-nn2)$n-M+n+2=0, n = 0 ,  kl, k 2  ,... . 

A ( a , M ; N  = 00) = 0, (3) 

where N is the order of the determinant. This condition then establishes the 
manner in which a and M must be related so that the periodic solution (2) can 
satisfy (1). By taking ever larger determinants from the centre of (3), we can 
obtain a progressively more accurate approximation to these curves of neutral 
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stability, these curves emerging from the calculation as asymptotic series in 2K. 
Somewhat surprisingly, a significant amount of information is obtained by 
evaluating (3) when N = 3, and table 1 shows the neutral curves obtained for 
N = 3, 6 and 7. Calculation of A(a, M ;  N = 7) = 0 is as far as we may proceed 
without incurring considerable difficulty, but the trend is clear. As we increme 
N ,  more parametric relations are discovered, and generally the accuracy to 
which we know those curves previously found is improved. Unfortunately, it is 
also obvious that the analytical solution of a more complicated equation would 
be very difficult to obtain in this fishion, particularly if we also seek the p = con- 
stant curves in the a, M plane. 

In  the section below, we shall approach the problem of internal-wave stability 
by assuming a form of the solution which is suggested by the wavelike character 
of the basic state; however, a much more imposing determinant will arise. For 
this problem we seek not only the curves of neutral stability, but those of constant 
disturbance growth rate as well. The complexity of the problem and the accuracy 
desired in this work require that we calculate the determinant numerically using 
complex arithmetic. 

3. Parametric instabilities in internal waves 
3.1. Theory 

In  the Boussinesq approximation, the two-dimensional inviscid equations 
governing the motion of an incompressible density-stratified fluid can be written 
(Phillips 1968) as 

V~Y, +B, = a ( r ,  v v y a ( x ,  y), (44 

where x and y are the horizontal and vertical co-ordinates, V2 = P/ax2+ Plays, 
N is the Brunb-V%is%lL frequency,? the stream function Y iszdefhed such that 
the velocity u = (Yv, -Y?,), and the buoyancy B is specified in terms of the 
gravity g, the reference-state density po and the local fluid density p as 

= - 9(P -Po)/Po. 

In  a constant-N fluid, (4) admits the well-known plane-wave sohtion 

Y = A cos(Zx+my-wt), (54 
B = - N'ZA u - ~  cos (ZX + my - wt) ,  (5b) 

w/iV = Z/[kl = COSO, (6) 
O being the angle that k makes with the horizontal. By virtue of the incompress- 
bility of the fluid, u is perpendicular to k and so the nonlinear terms vanish 
identically. The wave whose form is given by ( 5 )  is thus a solution to the full 

t N is also used to indicate the order of the determinant; the two uses are so disparate 

where k = (I, m) is the wavenumber. The dispersion relation is given by 

that no confusion should arise from this. 
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nonlinear equations (4). This fact affords us the opportunity to examine the 
stability of a hite-amplitude plane internal gravity wave. To do so, we express 
the stream function and buoyancy field as the sum of the basic state and a pertur- 
bation. Thus 

'F = Acos(lx+my-wt)+$, (7 a)  
B = - N21Aw-l cos (lx + my - wt) + b. ( 7 b )  

Substituting (7) into (4) and neglecting terms which are nonlinear in the distuf- 
bance quantities $ and b, we obtain 

V2@, + b, = -A sin qi (lV2$, - mV2$, + k2[Z@u - rn$J}, 

bt - N2$, = - A  sin qi (lb, - mb, + NY2w-~$g - N21rnw-l$,}, 

where q5 = Zx+my-ot and k = lkl. It is convenient to introduce the non- 
dimensional variables $, 6, Z, y" and f as follows: 

$ = Nk-2$, (x, y) = k-l(Z, y"), b = N2k-%, t = N-Y. 

If we d e h e  M = Ak2/2N as a measure of the basic-state amplitude and delete 
the tilde above the dependent and independent variables, the non-dimensiond 
equations are 

Vz@t + b, = - 2M sin qi [COB 8 Vz$, - sin 8 VZ$, + cos 8 $, - sin 8 $,I, (8a)  

b, - $, = - 2M sin 9 [cos 8 $u - sin 8 $, + cos 8 b, - sin 8 b,]. (8b)  

These are the disturbance equations and we note that, in the absence of a basic 
flow (M = 0) ,  the disturbance quantities $ and b take the forms which describe 
freely propagating internal wavea. 
W e  may simplify (8) by expressing them in a co-ordinate system which is 

more suggestive of the fundamental internal-wave geometry. Let us therefore 
introduce a rotated system (5, T), which is oriented such that the + 7 axis coincides 
with the direction of phase propagation (see figure 1 a). Then 

6 = ssin8-ycos8, 7 = xcose+ysine, 

and under this transformation, ( 8 )  become 

V2$, + (sin 8 b, + cos 8 b,,) = 2M sin qi ($, + Vz$,), 

b, - (sin 8 $, + cos 8 $,,) = 2M sin 9 ($, + bE), 

( 9 4  

(9b) 

where V a  = a2/afIa + a2/aq2 and qi = 7 - t cos 8. The basic state is now specified by 
Y = 2Mcosqi and B = -2Mcosq5, and the parameter M is seen to appear 
before those terms in (9) which couple the basic state with the perturbation 
($, b )  ; the apparent similarity between (1) and (9) is thus reinforced. This system 
of partial differential equations describes the behaviour of a disturbance ($, b )  
t o  a plane internal gravity wave. The form of this perturbation suggests itself 
if we examine the nature of the basic-state wave motion, which is that of a 
wave-associated velocity field propagating without change of form. 

We note that the system (9a and b)  will admit a separated solution of the 
form 

($2 b )  = fl(t)fZ(E)f3(9). 
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FI'I~URE 1. (a) The wave-related velocity profile - 2M sin (7 - t COB 0) propagates without 
ohange of form through the fluid. The + q  axis in the rotated 6, q co-ordinate system is 
aligned in the direction of the phase propagation of the wave. (b)  The Floquet vector having 
magnitude a propagates at an angle ~9 to the basic state with normalized wavenumber 
(0911. 
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Because of the appearance of periodic coefficients in (9a, b) ,  Floquet theory 
(Davis 1962) requires that we put 

00 

fa = exp ( ~ 4 )  C Fnein", 
,=-a 

where ,u is in general complex; this form is identical to  the one appearing in $ 2. 
Let us seek solutions which are bounded in space (wavelike solutions), but which 
are free to grow in time. Thus we require that ,u be imaginary and write the 
general solution as 

= ~ X P  ( P ) ~ X P  ( i ~ )  +nexp (in#), 
n s - w  

00 

b = exp (yt)exp ( $ 0 )  X bnexp (in$), 
n=-m 

where q50 = ( - a sin/3) E+ (a cos p) 7 - c j t  and the +, and bn are complex Fourier 
coefficients. The Floquet wave exp (iq50) is thus seen to propagate with frequency 
up at an angle /3 with respect to the basic-state wave (see figure 113). This method 
of solution is analogous to the one employed by Gill (1974) in his investigation 
of the stability of Rossby waves on a beta-plane. 

Substitution of this form into (90, b)  yields 

- [y-incos8-iuB] [ ( a~ in /3 )~+  ( a ~ o s B + n ) ~ ]  $, 
+ [ - ia sin 8 sin/3+ i cos B(a cos/3+ n)] b, 

= aM sin/3{ 1 - [(a sin/3)2 + (a cos /3 + n + 1)2]} $n+l 

- aMsinp{l- [(a sin/3)2 + (a cos/3 + n - 1)7} $n-l, (104 

I lob)  

This system can generally be solved for a range of /3 somewhere within the open 
interval (O", 180") ; and in fact, the growth rates Re y of the allowable disturbances 
will be functions of the angle that the Floquet vector makes with the basic- 
state wavenumber. The usual procedure would be to vary /3 to h d  those distur- 
bances which grow at the maximum rate for a given basic-state amplitude 2M 
and direction 8. I n  this fashion, the quickest growing, and thus most dangerous, 
instabilities are discovered. Unfortunately, the cost of performing these calcu- 
lations for even one value of /3 is prohibitively large. Since trial computations 
for a variety of values of /3 indicate that the qualitative features of the instability 
remain unaltered, there is little compromise involved in selecting one /3 for close 
examination; the significance of this restriction is discussed in $4. Thus, with 
little loss in generality, let us set /3 = 90" for the remainder of this work so that 
the solution becomes 

[y - in cos 8 - iu)] b, - [ - iasinBsin8 +i(a cosp+n) cos 81 $, 

= aMsin/3{bn+, + $,+, - bn-l - +,-,}. 

+ W  

%=-a 
$ = ~ X P  (At) ~ X P  ( - ia5) 2 $nexP (in$), (114 

+ W  

n=-m 
b = exp (At) exp (-;a[) 2 b,exp (in$), 

49 F L M  78 



770 R.  P .  Mied 

with A = y - i rp ,  and then (lOa, b )  become 

An II., -Pnq;lbn - aM[dn $w+1- en @n-J = 0, ( 1 2 a )  

hnbn-P ,nIkn-aM(bn+l -bn- l ) -aM(~n+l -~n-1 )  = 0, (12b)  

where pn = i(n cos 8 -a sine), qn = n2 + a2, 

d ,  = [(n+ 1 ) 2 + a 2 -  l]/(n2+a2), en = [ (n-  l )2+a2-  l]/(n2+a2),  

and A, = A - in cos 8. Equation ( 1 2 a )  provides expressions for b,, bn-l and bn+l, 
which can be substituted into (12b)  to obtain a recursion relation linking five 
contiguous II., : 

By substituting the values n = 0, 1, 2 2,  . . ., & N into (13) in turn, we obtain 
a system of homogeneous equations for the $n, which are treated in the same 
fashion as those arising in fj 2 .  For a non-trivial solution to exist, we require that 
the determinant of the coefficient matrix vanish, so that 

A ( ~ , A , M , ~ ; N )  = 0. (14 )  

However, there arise complications not present in (3). Not only is the determinant 
(14 )  complex but A is also. Thus 

A = ; t + i A i .  

The imaginary part 4 combines with the frequency of the basic-state harmonics 
to  provide a frequency I m  A, for the various parametric instabilities, so that 

Im  A, = A, - n cos 8. 

The solution of (14 )  will give the neutral-growth curve, as well as the curves of 
constant growth rate 

a = a ( M ;  A,.). 

We also suspect that A, is dependent on the disturbance wavenumber a, and the 
results of the calculations reported below bear this out. The question to which 
we seek an answer is then as follows. Suppose an internal wave with amplitude 
2 M  has a phase which propagates at a direction 8 ( = tan-1 m/Z) to the horizontal. 
Which disturbance wavelets will grow, and what is their growth rate A, and 
frequency A, - n cos 81 

3.2. The &ture of the instability 

I n  our treatment of the Mathieu equation, the various branches of the neutral- 
stability curves, as well as the solutions valid along them, emerge as asymptotic 
series in M .  For the case M = 0, the trivial result a = n2 is retrieved and a 
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neutrally stable solution emerges. When M = 0 in the present case, (12a, b )  
become 

( A  - in cosd) $, - i (n cos 8 - a sin@ (nz + 
- i(n cos 0- asin 0) $, + ( A  -in cos 0)  b, = 0.  

b,  = 0, 

The condition that there be non-trivial solutions to this system is met if the 
respective determinants vanish, and this yields 

A, = 0, 

A,-ncos0 = (ncos0-asin0)/(n2+a2)*, n = 0, & 1 ,  +2 ,  ... . (15) 

As was anticipated in Q 3.1, A, is indeed observed to be a function of a. Further, 
each value of n corresponds to a different neutrally stable mode. When M = 0, 
these are seen to be of the form 

($, b )  = Re {exp (iA,t) exp ( - iaE) ($,, b,) exp (in#)), n = 0, i- 1 ,  -t 2, . . . . 
Of great importance is the physical significance of ( 1 5 ) .  Jn $3.1 ,  it was pointed 
out that, when M = 0, the disturbance equations describe freely propagating 
internal waves. From the relation of the 6,  7 co-ordinate system to the non- 
dimensional z, y reference frame (see figures 1 a, b ) ,  we see that the non-dimen- 
sional disturbance wavenumber referred to x, y co-ordinates is 

(n cos 8- asin 8, n sin 8 +a cos 8). 

If we define 8, as the angle to the horizontal at which these free disturbance 
waves will propagate, we see from (6) that the (non-dimensional) frequency of 
that wave hi - n cos 0 is related to 0, by 

Furthermore, 
case, = A,-ncos8. 

cos 8, = (n cos 8 - a sin 8)/[(n cos 0 - a sin e)z + (n sin 8 + a cos 8)2]4 

from simple geometric considerations. Thus 

cos 8, = A, - n cos 8 = (n cos 8 - a sin 8)/(n2 + as)*, (16) 

and we see that (15) can be retrieved by employing only physical arguments. 
For M = 0 and for a given mode (fixed value of n), (16) defines a curve along which 
there is an infinite set of (a,&) pairs which are ostensibly candidates for the 
instability; however, only one pair will satisfy the additional restrictions imposed 
by increasing the order of the determinant in (14) .  

In  Q 2 ,  it was seen that, when M = 0, the points at which the stability curves 
cross the a axis were given by a = n2. This is a result with a great deal of intuitive 
appeal, for one would expect that the most unstable modes, those which can 
most readily extract energy from the basic state for their growth +t finite M ,  
would have wavenumbers which are related to harmonics of the solution of ( 1 )  
when M = 0. I n  the present work, we expect that the lines of neutral stability 
will meet the a axis at points which are of similar importance when viewed in 
the con.text of energy transfer from the basic-state wave motion. For vanishingly 
small N, the waves which can grow at the expense of the basic-state energy are 

49-2 
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FIUIJRE 2. (a) The mechanism of the n = 0 , l  instability is that of the classical nonlinear 
resonant interaction when M = 0. (b)  When n = 1, 2 the instability is that of a second- 
order resonant interaction with the respective participating waves more nearly collinear 
with the basic state. 

those waves which participate in a nonlinear resonant interaction with the basic 
state given by (5). 

The phase of the basic state is given by 

+ = v-tcose, 

while the phases of the waves comprising the instability are seen from (11) to 
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Resonant waves 
w 2: 0) U A, 
n = O , i  0.798 0.500 
n =  1 , 2  0.933 1.158 
n =  2 , 3  1.649 2.082 

TABLE 2. The values of u and A, which satisfy the resonance condition (17) when M = 0. 
Here 0 = 30" and /3 = 90". 

\ 

E 
\ 
\ 
\ 

\ 
\ 
\ 
\ 

0 

FIUURE 3. The heavy solid lines define the allowable nonlinear resonant sum interactions 
in which disturbances participate with the basic state OA. The resonance triad OBA 
constitutes the first parametric instability, the triangle OCA the second. The right-angled 
triangle OEA has point E lying on the curve ODE. This corresponds to a spurious root 
which is discussed in 8 3.2. 

be - a[ + n y  + (A, - n cos 0 )  t .  The basic state and the disturbances? correspond- 
ing to n = 0, + 1 are members of the resonant triad shown schematically in 
figure 2 (a).  These satisfy the resonance condition 

cos eo + cos 0, = cos e 
for only one value of a in general. We might suspect that this particular value 
of a corresponds to the first crossing point of a curve of neutral stability with 
the a axis; and indeed, this is shown in the next section to be the case. For 
n = 1 and 2 the unstable waves which participate in the three-wave resonant 

t In what follows, the lower of the two integers will be used to refer to the disturbance. 
For example, an n = 0, 1 instability is said to correspond to n = 0. 
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interaction are pictured in figure 2 ( b )  and again satisfy the resonance 

for one a, which, as we shall see in the following section, is the second a i s  
crossing point. Similar geometrical constructions which satisfy the frequency 
resonance condition may be formed in a similar fashion for all other integers 
n > 2. Each of these triads then permits resonance at second order for one value 
of a. Since there is a countably infinite set of such resonant triads, there is an 
infinitely denumerable set of a's for which the neutral-stability curves intersect 
the a axis (as is seen to be the case for Mathieu's equation). For a particular case 
(0 = 30') in the present problem, the first three intersection points are given in 
table 2. 

In  $3.1, /3 was fixed equal to go", and the ensuing analysis and above results 
follow from this assumption. The manner in which the countably infinite set 
of a's arise can be seen by examining figure 3, which displays the waves which 
satisfy the resonance conditions for participation in a second-order sum inter- 
action with the basic state (Phillips 1 9 6 6 ~ ) .  Theresonance triad OBA corresponds 
to the first, parametric instability, the triangle OCA to the second, and so forth. 
Clearly, the wave triad OBA can be distorted (by varying /3) such that points B 
and C are co-incident. The infinitely denumerable set of a's which arise in the 
solution are thus artifacts of the restriction /3 = constant. Had we allowed /3 to 
vary, a continuum of unstable a's would have emerged as opposed to the discrete 
set obtained with the restriction /3 = constant. 

Another right-angled triangle OEA can also be constructed such that point E 
lies on the curve ODE; this corresponds (when 8 = 30") to a value of a 2: 6.67. 
When M > 0 and A, > 0 however, no values along (or in the vicinity of) the 
curve ODE are found to be roots of the transcendental equation (14), so that 
the resonance conditions which define this particular curve are resonant inter- 
actions which are simply not contiguous to a region of parametric instability in 
the a, M parametric space. 

When M > 0, these disturbances must propagate in the presence of a tem- 
porally and spatially modulated buoyancy field (the basic state). While one 
would not expect either (16) or the resonance condition 

to be valid for M > 0, there do exist instabilities which obey a resonance condi- 
tion. These will be shown, however, to be members of a much larger set of 
instabilities, which are not in resonance with the basic state. 

The way in which these particular (a, A,) pairs emerge from the calculations 
is indicated in figure 4 when the particular case 8 = 30" is examined. The dis- 
persion relation (15.) is shown as a dashed line and the loci of zeros of ReA 
and ImA are also shown. The curves ReA = 0 are the lines running more or 
less parallel to the a axis, while the ImA = 0 lines are the loops entering from 
the left and right. The intersection points of these two families of curves represent 
roots of (14). We note that for each n there are two such roots, and that these are 
more or less equi-distant from the point of intersection of ReA = 0 and the 
dispersion curve (15). This is because the dispersion curve gives A, = &(a) for 

constraint ~ ~ ~ e , + c o s e ,  = case 

cos en + cos en+, = cos e (17) 
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0.0 1 .o 2 4  

U 

FIGURE 4. The a, Ad plane for M = 0.1 and h, = 0.01. The intersection of the curves 
Re A = 0 (the lines more or less parallel to the u axis) and Im A = 0 (the loops entering 
from the left and right) define those points where A = 0 for /3 = QO", 8 = 30' and 
N = 11. The locations of the roots for m = 0 , i  and 2 have arrows pointing towards 
them and their respective dispersion relations A ,  = A,@) are given by dotted lines for 
M = 0 and A, = 0. See $3.2 for a more complete discussion. 

M = 0, and this plot has been made for M = 0.1. As M is increased above zero, 
the two roots (initially coincident when M = 0 )  become more distant in the 
a, Ai plane, so that this behaviour gives rise to wedge-shaped regions of instability 
in the a, M plane. These V-shaped areas are analogous to those arising in Mathieu's 
equation. 

The vertical line at a = + J3 is a branch cut along which ReA and ImA are 
discontinuous, being infinite and of the opposite sign on either side of this line. 
This singularity arises naturally because of the occurrence of the factor 

n cos 8 -a sin 8 

in the denominator of various terms in (13). For 8 = 30°, (18) possesses roots at 

a = ncot 30" = J3,2 J3 ,3  J3, ..., 

(18) 

which occur in the real and imaginary parts of the determinant. 
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Although roots of (14) have been found for the cases n < 0, examination of 
(15) shows them to be related to the n 2 0 modes, at least when M = 0. That is, 
the transformation 

(n,a,A,)+(-n,  -a, -Ai) 

leaves (15) unaltered. Numerically, it  is observed for M > 0 that 

+&,&) = +%-4 -A,), 

where the asterisk denotes a complex conjugate. Thus the n 2 0 modes appear in 
the region a > 0, A, > 0 (shown in figure 4), while the quadrant a < 0, A& < 0 
contains essentially the same roots which correspond to n ,< 0. 

3.3. The numerical approach 

When M 4 0, the problem is essentially one of choosing the parameters a, M ,  A,, 
A, and 8 in such a fashion that the relations 

ReA=O, I m A = O  (19a, b )  

are valid. This requires a careful search of the parameter space and we proceed 
by rewording, in effect, the question posed at the conclusion of $3.1. First we 
fix 8, A, and a. In  the A,, M plane, we then examine the locus of points such that 
(19a) or (19b) is satisfied. At the crossing of these two curves the complex magni- 
tude of the determinant vanishes, hence (14) is satisfied. Cycling through values 
of 01 and repeating this search for the roots of (14) in the A,, M plane, we obtain a 
sequence of triads (a, M ,  A,) for which the determinant vanishes. Since we have 
fixed A, and 8 for this calculation, we have obtained the curves of constant 
growth rate M = M(a;  A,.) for a wave propagating at angle 8 to the horizontal; 
we also know the dispersion relation A, = &(a) of the instability. 

The evaluation of the complex determinant is performed numerically using the 
method of Gaussian elimination (Noble 1969) to form a triangular matrix, so 
that the determinant is then the product of the diagonal terms. By successively 
halving the size of a box in the A,, M plane, the roots of the determinant may be 
located to within an arbitrary accuracy in this plane. We have seen in $ 2  that 
as the order of the determinant N is increased the accuracy of the neutral- 
stability curves is increased, their position in the A,, M plane converging as N 
becomes large. By increasing N and noting any change in the position of the 
M = M(a;h,) curves, we are able to establish a minimum determinant size to 
be used in the calculations for any given error criterion. For M 5 O(+),  the 
position of the curves was found to be accurate to within a nominal 1 yo provided 
N 2 11. 

Using the parameter-search technique described above, we find that internal 
waves exhibit qualitatively similar parametric instabilities for all values of 8 
sampled between 10' and 80". As the properties of these disturbances are similar 
for all 8, only one representative example (8 = 30') is examined extensively. 
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FICJIJRE 5. The curves of neutral stability separate the 01, .kf plane into regions of instability 
and stability, the latter appearing as the shaded areas. These neutral curves correspond 
to the modes n = 0,  1 and 2 when /3 = go", 8 = 30" and N = 11. 

4. Discussion of results for the case 0 = 30' 

The curves of neutral stability (A,  = 0) are shown in figure 6 for the first three 
modes, n = 0, 1 and 2; note that the values of a at which these curves intersect 
the axis are precisely those given in table 2. These neutral curves form an irre- 
gular sawtooth pattern and divide the plane into regions of stability and in- 
stability. In this respect, these wedge-like regions qualitatively resemble those 
arising from a similar treatment of Mathieu's equation. They differ, however, in 
that the various branches cross one another. This should not be considered 
particularly surprising, as these various branches correspond to different 
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FIUURE 6. The disturbance phase propagation direction 0, is shown as a function of the 
basic-state M for n = 0 , l  and 2. Here 6 = go", 0 = 30" and N = 11. The 0, are measured 
as indicated in figures 2 (a) and (a). 

frequencies and therefore represent waves propagating at different angles from 
one another (see figures 2cc, b) .  

For M = 0, the dispersion relation of the disturbance is shown in 53.2 to be 
cos 8, = hi - n cos e = (n cos 8 - a sin 8)/(na.+ cx2)Q. 

The frequency and angle of propagation of these waves are simply related by 
linear theory. That is, this dispersion relation is equivalent to (6) for waves 
propagating in an otherwise quiescent fluid. For M > 0, however, these distur- 
bance waves must propagate through a medium which is already supporting 
the buoyancy and velocity fluctuations associated with the passage of the large- 
amplitude basic-state wave. While it is geometrically obvious that 

cos 8, = (n cos 8 - a sin 8)/(n2 + a2)*, (20) 
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F I G ~ E  7. The curves of constant growth rate A, for (clockwise from upper left) n. = 0, 1 
and 2. Here /3 = go", 0 = 30" and N = 11. The dashed lines give the location of the 
maximum h, for the disturbance at  that value of M .  

we would not expect, nor indeed do we find, that the propagation direction and 
frequency are related in the classical fashion given by (6). I n  general then, 

CoSB, + Ai-ncos8, M > 0. 

Because of the parameter search employed to solve (14), cc and M are known for 
B = 30" and A, = 0. Using (20) ,  we can calculate 0, = B,(M) for the down-going 
waves (see figures 2a, b) associated with the first three unstable modes, and the 
results of this calcuIation are disphyed in figure 6. 

The significant result obtained here is that this instability is a fundamentally 
nonlinear one which involves mode coupling and the concomitant transfer of 
energy from the basic state into the disturbance. As a measure of the rate of 
growth of those disturbances, we have calculated the curves A, = constant. In  
figure 7, we display these curves of constant growth rate M = M(cc;A,) for 
A, = 0.0, 0.01, 0.05 and 0.10, and n = 0, 1 and 2. We note that a qualitative 
difference appears between growth-rate families for the different modes n. The 
minimum M on a curve A, = constant appears to shift to larger or smaller a as 
h, is increased, depending on which mode we are discussing. The loci of points 
for which the minimum M occurs on curves of constant growth rate are shown 
in figure 7 as dashed lines, which pass through the vertex of the V-shapes formed 
by the neutral curves a t  the M = 0 axis. 
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In  this work, we have simply put /3 = 90" so that the Floquet vector with 
magnitude lakl is perpendicular to the basic-state vector k (see figure l b ) .  
This choice of / was made simply for the sake of definiteness, and because it is 
financially prohibitive to perform anything other than a few sample calculations 
with a variety of values of /3. Another choice of /3 would have yielded another, 
similar, set of instabilities, each with their own growth rates, and these will turn 
out to  grow faster or slower than the instabilities whose growth rates are exhibited 
in figure 7. So we see that, at the very worst, the choice /3 = 90" may lead one to 
underestimate the maximum disturbance growth rates available in the system 
(9a, b). On the other hand, we can say with absolute certainty that, of all the 
available instabilities, there exist disturbances which will grow at least as rapidly 
as the ones shown in figure 7. Moreover, the essential features of the instability 
remain qualitatively the same for / + 90': plane internal waves of even vanish- 
ingly small amplitude are parametrically unstable. 

The countably infinite disturbance wavenumber set (with /3 = go'), expressed 
in the 6, q frame, is 

k ,= (a ,n ) ,  n=O,1,2 ,..., 
so that lkl = (a2+n2)*. Recall that these have been non-dimensionalized with 
the basic-state wavenumber Ikl, so that lknl represents the ratio of the basic- 
state wavelength to that of the disturbance. For the case n = 0 only, we see that 
the wavelength of the smaller wavenumber instability ( =  27r/a) exceeds that of 
the basic state. In  fact, preliminary calculations reveal that the n = 0 mode 
exhibits this trend for all values of 8 between 10" and 80°, so that this behaviour 
is not confined only to the case 8 = 30". Among all the different modes, the 
n = 0 case is unique in this respect. We remark further that the long wavelength 
feature of the n = 0 mode is in contrast to the type of instability uncovered by 
McEwan & Robinson (1975), who considered only instabilities having much 
smaller length scales than the basic-state wave. The present work does, however, 
seem to support McEwan & Robinson's choice of the small-scale waves as those 
most likely to render the basic state unstable. Evidence of this is seen in figure 7, 
where we note that the minimum value of M (on any curve of constant growth 
rate) becomes smaller as n is increased. It is important to comment in this regard 
on the importance of viscosity. If M is kept constant and successively higher 
modes are examined, one may obtain values of the maximum A, (which lie 
along the dashed lines in figure 7) and its associated a, from which lknl may be 
calculated. I n  so doing, we observe that max (A,( I k,J), M = constant) does not 
rise as rapidly as the rate of viscous dissipation, which is proportional to 
lknI2. For basic states of very small wavelength then, the lower-order modes 
would be the most unstable, as their viscosity-adjusted growth rate is larger 
than that for the higher modes. For oceanic waves having wavelengths of the 
order of tens of metres on the other hand, it would appear that the higher modes 
are indeed the most unstable, as viscosity would only seriously influence the 
behaviour of very high mode number instabilities, having commensurately small 
wavelengths. 

While any discussion involving extrapolated growth rates must be viewed as 
conjectural, it is important to state that for the larger n, the resonant triads for 
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M 11 0 (see figures 2a, b and 3 )  become more nearly collinear. Phillips (19663) 
has shown that, for nearly collinear waves, the interaction times are shorter 
than those for waves'arranged in a more nearly equilateral configuration. Since, 
for finite M ,  the instability is in general merely a detuned resonant interaction 
with a finite-amplitude basic state, there is some basis for the conjecture that 
the trend of increasing disturbance growth rate with higher mode number would 
continue past the cases represented in this paper. 

These calculations have been performed for M < O(4) not only to keep the  
determinant size no greater than N = 1 1  for accuracy, but because different 
types of internal-wave instabilities seem to occur for values of M significantly 
larger than this. These disturbances possess stability curves qualitatively different 
from those of parametric instabilities; furthermore, their existence at these 
higher values is not explained by the theory of $ 3 .  A concern more germane to 
the present work, however, is the possibility that internal waves may exhibit 
subharmonic parametric instabilities. In  fact, there is no reason to believe that 
subharmonic instabilities do not exist; although, in a sense, the question may be 
moot because numerical calculations have been made which exhibit instabilities 
for all waves with 10" < 0 Q 80" whenever 0 < M < 1 .  More significantly, how- 
ever, we ctinnot dismiss the possibility that subharmonic modes might possess 
growth rates which exceed those of the harmonic ones considered in this paper. 
Since the lower mode numbers of the harmonic instabilities seem to require 
larger values of M to produce the same disturbance growth rate, we might 
conjecture tha t  these longer subharmonic instabilities, if indeed they exist, are 
probably not as important as the harmonic ones. Only the actual analysis of the 
problem, however, can resolve the question. 

- 

5. Conclusion 
We have solved the problem of the harmonic parametric instability of a finite- 

amplitude plane internal gravity wave in an incompressible Boussinesq fluid, 
and this parametric instability has been shown to reduce to the classical second- 
order nonlinear resonant interaction in the limit of vanishingly small basic-state 
amplitude. Although only the case for waves propagating at an angle 8 = 30" 
to  the horizontal has been examined in detail, preliminary calculations have 
been made for a variety of values of 0 between 10" and 80" with the same qualita- 
tive results. As was discussed in the previous section, the restriction p = 90" 
may cause us to underestimate the disturbance growth rates somewhat, but 
this does not vitiate the principal conclusion of this work as regards the stability 
of internal waves. We conclude, therefore, that even infinitesimal-amplitude 
internal waves for which 10" < B < 80' are parametrically unstable. Of these 
unstable modes, the limited evidence presented in this paper suggests that those 
with the higher wavenumbers are the fmter-growing disturbances. 

The reader should bear in mind, however, the caveat of $ 3.2 regarding p. For a 
finite-amplitude internal wave, instabilities develop and grow simultaneously 
over a wide range of angles p. These instabilities, acting in concert, extract the 
energy of the basic state at such a rate that they appreciably alter its amplitude 
and thus rapidly invalidate the linearization. 
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Appendix 
The recursion relation 

- M@n-2 + (a- n2) @n- M@n+2 = 0 

links three non-contiguous coefficients. Substitution of the integer values 
n = 0, & 1, 2, . . . yields a linear homogeneous algebraic system of infinite order. 
The necessary condition for the existence of a non-trivial solution is that the 
associated infinite determinant vanishes : 

A(a,  M ;  N = a) = 

... a-9 0 

... 0 a-4 

... - M  0 

... 0 - M  

... 0 0 

... 0 0 

... 0 0 

- M  0 
0 - M  

a-1 0 
0 a 

- M  0 
0 - M  
0 0  

0 
0 

- M  
0 

a- 1 
0 

- M  

0 0 1.. 

0 0 ... 
0 0 ... 

- M  0 ... 
0 - M  ... 

a-4 0 ... 
0 a-9 ... 

= 0. 

The case N = 3 leads to 

A ( a , M ; N  = 3) = a [ ( a - i ) 2 - M ' ]  = 0,  

and so the first approximations to the neutral branches are 

a = O(M2) ,  a = 1 - M + O ( M 2 ) ,  a = l + M + O ( M z ) .  

Along these branches, the solutions 

@ = ce, (7, M )  = 24[1-  +M COB 29 + O(M2)] ,  
jh = se, (q, M )  = sin q + O(M), 

@ = ce, (q, M )  = cosq + O(M),  

respectively, are valid (Abramowitz & Stegun 1985). Proceeding with the next 
higher approximation, we find that 

A ( a , M ; N  = 5 )  = ( a - 4 ) [ ( ~ ~ - 1 ) 2 - M ' ] [ ~ ~ ( a - 4 ) - 2 M ' ]  z= 0, 

which has solutions 

a = 1 - M + O ( M 2 ) ,  
a = -4M2+O(M4) ,  
a = 4 + O ( M ) .  

a = i + M + O ( M ' ) ,  
a = 4+&M2+O(M4),  

No new information is gained regarding the parametric relations for ce, and se,, 
but the third a ( M )  represents a refinement in the accuracy of the ce, curve, while 
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the latter two are new curves. These correspond to 

@ = ce, (7, M )  = cos 27 + O(M) ,  

$ = se2 (7, M )  = sin 27 + O(M),  

respectively, but we remark that a = 4 + +M2 + O(M3)  is in error by AM2, the 
precise answer being a = 4 + A M 2  + O(M3).  The case N = 7 yields 

A(a,  1M; N = 7) = (a - 4) [a(a - 4) - 2M2] {[(a - 1) (a - 9) - M2I2 - M2(a - 9),} 
= 0. 

The second factor, which yields the curve for ce,, still yields a neutral curve which 
is in error by A M 2 ,  but the last factor improves the accuracy of our knowledge 
of the sel and ce, curves: 

a = l - M - + M 2 + O ( M 3 )  

and a =  l+1M-&M2+O(M3).  

In  addition, the last factor introduces the stability boundaries for ce3 and se3. 
To O(M3), they are identical: 

a = g + g ~ + 0 ( ~ 3 ) .  
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